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Abstract

The mtDNA ‘mutator’ mouse, also called the ‘POLG’ mouse, is a well-characterized model frequently used for studies of progeroid 
aging. Harboring a mutation in the proofreading domain of the mitochondrial polymerase, polymerase-γ (Polg), POLG mice acquire 
mtDNA mutations at an accelerated rate. This results in premature mitochondrial dysfunction and a systemic aging phenotype. 
Previous work has demonstrated that the progeroid phenotype in POLG is attenuated following endurance exercise, the only reported 
intervention to extend health span and lifespan of these mice. Herein, oocyte quality was evaluated in sedentary and exercised POLG 
mice. In mice homozygous for the Polg mutation, litter size is dramatically reduced as compared to heterozygous Polg mice. 
Following ovarian hyper-stimulation, oocytes were retrieved until 9 months of age in exercised and sedentary groups, with no oocytes 
ovulated thereafter. Although ovulated oocyte numbers were not impacted by exercise, we did find a modest improvement in both 
the ovarian follicle reserve and in oocyte quality based on meiotic spindle assembly, chromosomal segregation and mitochondrial 
distribution at 7 months of age in exercised POLG mice as compared to sedentary counterparts. Of note, analysis of mtDNA 
mutational load revealed no differences between exercised and sedentary groups. Collectively, these data indicate that exercise 
differentially influences somatic tissues of the POLG mouse as compared to oocytes, highlighting important mechanistic differences 
between mitochondrial regulatory mechanisms in the soma and the germline.
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Introduction

In most female mammals, a natural consequence of aging 
is a reduction in the quantity and quality of oocytes, 
with the likelihood of successful pregnancy therefore 
substantially diminished over time. In humans, the aging-
related decline in oocyte quality is linked to a dramatic 
risk of aneuploidy (Hassold & Chiu 1985, Battaglia et al. 
1996, Broekmans et al. 2009, Tilly & Sinclair 2013). An 
accruing body of evidence from both animal models 
and clinical IVF data attribute aberrant mitochondrial 
function to many of the properties linked with the age-
associated decline in oocyte quality (Dumollard  et  al. 
2007, Broekmans et al. 2009, Bentov et al. 2011, Tilly 
& Sinclair 2013). In normal oocytes, mitochondria 
perform a diverse range of cellular functions that are 
essential for oocyte maturation and meiotic spindle 
assembly, fertilization and subsequent preimplantation 
embryogenesis (Van Blerkom et al. 1995, Igarashi et al. 
1997, 2005, Schon et al. 2000, Eichenlaub-Ritter et al. 
2004, Zheng et al. 2007, Bentov et al. 2010). In the early 
stages of the oocyte maturation process, prior to germinal 
vesicle break down, mitochondrial biogenesis ensures 
that the critical threshold number of mitochondria 
required for successful embryogenesis is met (Piko & 

Matsumoto 1976, Jansen & Burton 2004, Wai  et  al. 
2010). Upon initiation of maturation to metaphase II 
(MII), mitochondrial biogenesis ceases and does not 
resume again in the developing embryo until post 
implantation (Piko & Taylor 1987, Reynier et al. 2001, El 
Shourbagy et al. 2006, Santos et al. 2006, Spikings et al. 
2007, Wai  et  al. 2010). At this time, a subpopulation 
of mitochondria hyperpolarizes, resulting in an increase 
in mitochondrial membrane potential (Δψm) and 
translocates to the perinuclear region to provide the ATP 
required for successful meiotic spindle formation and 
proper chromosome segregation (Van Blerkom  et  al. 
2002). Additionally, a subset of mitochondria adjacent to 
the plasma membrane increases Δψm to mediate sperm 
penetration at the time of fertilization. In aged oocytes 
mitochondrial dysfunction becomes common, indicated 
by both reduction in Δψm and failure to localize to 
the proper perinuclear position, with mitochondrial 
aggregation frequently observed as a marker of poor 
oocyte quality (Wilding  et  al. 2001, Selesniemi  et  al. 
2011). In addition to aberrant localization and Δψm, 
the average number of mitochondria decreases on a 
per-oocyte basis, concomitant with decreases in ATP 
biosynthesis and tricarboxylic acid cycle metabolites 
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and increases in irregular ultrastructural morphology 
and mtDNA mutational loads (Reynier et al. 2001, May-
Panloup  et  al. 2005, Santos  et  al. 2006, Duran  et  al. 
2011, Murakoshi et al. 2013, Simsek-Duran et al. 2013). 
Experimental evidence also points to mitochondrial 
dysfunction as a direct cause of poor oocyte quality. 
For example, in a mouse model for maternal diabetes, 
Wang et  al. determined that poor reproductive 
outcomes mirrored those observed in aged oocytes, 
including abnormal mitochondrial ultrastructure, 
reduced ATP generation, meiotic spindle defects 
and improper chromosome segregation (Wang  et  al. 
2009). Collectively, strong evidence points toward 
mitochondrial dysfunction as a root cause of oocyte 
failure with age.

The mtDNA ‘mutator’ mouse model, which harbors 
a D257A mutation in the exonuclease domain of 
the ‘proofreading’ DNA polymerase-γ (Polg) gene, 
exhibits a systemic multisystem premature aging 
phenotype attributed to accrual of mtDNA mutations 
and mitochondrial dysfunction (Trifunovic  et al. 2004, 
Kujoth et al. 2005). Among the hallmark characteristics 
associated with aging, POLG-mutant mice acquire 
severe and accelerated onset of sarcopenia, hearing 
loss, osteoporosis, graying of fur and alopecia, thymic 
involution, testicular atrophy, enlarged heart, loss of red 
blood cells, weight loss, as well as a marked reduction 
in lifespan (Trifunovic et al. 2004, Kujoth et al. 2005). 
Importantly, a series of reports has now demonstrated 
that endurance exercise prevents the systemic aging 
phenotype in the POLG mouse (Safdar et al. 2011a,b, 
2016b, Clark-Matott et al. 2015). POLG mice performing 
endurance exercise show remarkable phenotypic 
improvements in every tissue examined, and are in 
large visually indistinguishable from age-matched, WT 
counterparts (Safdar et al. 2011a). For example, exercise 
ameliorates the premature aging-related outcomes 
of the POLG mutator phenotype on sarcopenia, 
cardiomyopathy, brain atrophy, fat deposition and 
hemoglobin production. Additionally, molecular 
markers for mitochondrial biogenesis and function are 
upregulated in POLG mice following exercise, with levels 
comparable to WT mice (Safdar  et  al. 2016b). Taken 
alongside visually normal mitochondrial appearance 
and an absence of increase in oxidative damage in 
exercised POLG mice, the collective data indicate a 
marked improvement in mitochondrial quality in POLG 
mice on an exercise regime. Furthermore, in exercised 
POLG mice, lifespan is also extended, comparable to 
that of WT mice. Of note, it was also demonstrated that 
endurance exercise results in a significant increase in 
testicular mass and a modest increase in ovarian mass 
(Safdar et al. 2011a), although gonadal function was not 
examined. Herein, we describe the effect of the POLG 
mutator mouse phenotype at the level of the oocyte, 
using established markers of oocyte quality. Moreover, 
given the noteworthy impact of endurance exercise on 

the multisystem aging phenotype in the POLG mouse, 
we sought to determine whether an identical exercise 
regime confers similar benefits to oocytes in female 
POLG mice.

Materials and methods

Animals

Heterozygous mice (PolgD257A/+) were obtained from the 
Jackson Laboratory and used to generate the homozygous 
knock-in mtDNA mutator mice (PolgD257A/D257A). WT C57BL/6 
mice were from Charles River. All experiments described 
herein were reviewed and approved by the Institutional 
Animal Care and Use Committee of Northeastern University.

Endurance exercise regimen

Female PolgD257A/D257A mice were housed individually in 
pathogen-free facilities with free access to food and water. 
Body weight and condition were analyzed weekly throughout 
the study. At 3 months of age, PolgD257A/D257A were randomly 
assigned to sedentary (POLG-SED) or endurance exercised 
(POLG-END) groups. POLG-END mice were exercised three 
times per week on a mouse treadmill (Exer6M Treadmill, 
Columbus Instruments) at 15 m/min for 45 min. The exercise 
protocol was continued from 3  months of age through the 
duration of the study (up to 9 months of age). Once per month, 
mice from both the POLG-SED and POLG-END groups were 
subjected to an endurance stress test, which consisted of 
running on a treadmill at slowly increasing speed intervals 
(1 m/min increase every 2 min) until they could no longer 
run on the treadmill for ten continuous seconds. We were 
repeatedly unable to retrieve oocytes from POLG mice post 
9  months of age due to lack of ovulation following hyper-
stimulation, and thus, the study concluded when mice reached 
9 months of age, within the normal reproductive time frame 
for WT C57BL/6 female mice. Not unexpectedly, our pilot 
studies demonstrated no difference in oocyte quality between 
exercised C57BL/6 and sedentary C57BL/6 during this time 
frame (Supplementary Fig.  1, see section on supplementary 
data given at the end of this article), and so sedentary C57BL/6 
were included as a reference for ‘normal’ oocyte quality.

Oocyte retrieval

Ovulation was induced by intraperitoneal injection of 
pregnant mare serum gonadotropin (PMSG, 10 IU; Sigma-
Aldrich) followed by human chorionic gonadotropin (hCG, 
10 IU; Sigma-Aldrich) 46–48 h later. Fifteen to sixteen hours 
post hCG injection, mice were killed by CO2 asphyxiation, 
and the ovaries and attached oviducts were collected. Oocytes 
were released from the oviducts by puncturing the oviducts 
with an insulin syringe, and oocytes were collected via pulled 
glass pipet. Collected oocytes were denuded of cumulus cells 
by incubating for 2 min in 80 IU/mL of hyaluronidase (Sigma-
Aldrich) at 37°C, followed by three washes with human tubal 
fluid (HTF; Irvine Scientific, Santa Ana, CA, USA) supplemented 
with 0.4% BSA (fraction V, fatty acid free; Sigma-Aldrich) at 
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37°C. Oocytes were counted and classified using a Zeiss Stereo 
Microscope (Zeiss) as MII (extrusion of the first polar body into 
the perivitelline space), maturation arrested (germinal vesicle 
stage, or germinal vesicle breakdown without polar body 
extrusion) or dead (membrane blebbing, oocyte fragmentation 
or condensed cytoplasm). Following analysis, MII oocytes 
were fixed in 2% paraformaldehyde for 30 min at 37°C for 
endpoint analyses.

Follicle counting

Following oocyte retrieval, ovaries from 3-, 7- and 9-month-
old female mice were collected and fixed, paraffin embedded 
and serially sectioned (8 μm). The sections were mounted on 
slides and subsequently stained with hematoxylin and picric 
methyl blue for the assessment of total, primordial, primary 
and preantral follicle numbers as described previously 
(Wang et al. 2017).

Mitochondrial distribution analysis

Mature, MII oocytes were collected, denuded and fixed as 
described earlier, followed by incubation in permeabilization 
buffer (1% bovine serum albumin (BSA), 5% normal goat 
serum (NGS), 0.1% Triton-X, 0.05% Tween-20 in PBS) for 
30 min. Oocytes were then stained with 500 nM MitoTracker 
Red CMXros for 1 h at room temperature. Once stained, 
oocytes were washed in PBS (Sigma-Aldrich) and then 
mounted and imaged at 63× magnification on a laser scanning 
confocal microscope (Zeiss). Mitochondrial distribution was 
classified as normal upon observing a uniform and distinctly 
punctate cytoplasmic distribution, whereas oocytes containing 
mitochondria having diffuse (non-punctate) or condensed 
mitochondrial distribution were classified as abnormal 
(Selesniemi et al. 2011).

Immunofluorescence

Fixed MII oocytes were incubated in permeabilization buffer 
for 30 min, followed by a brief wash in PBS and incubation 
in blocking buffer (2% BSA, 2% NGS in PBS) for 1 h. A 1:100 
dilution of mouse anti α-tubulin antibody (Sigma-Aldrich) was 
added to the sample, and incubated for 1 h, followed by three 
washes for 5 min each in PBS. The samples were then incubated 
with goat anti-mouse conjugated to Alexa-488 (1:500; Life 
Technologies). The oocytes were then washed three times in 
PBS for 5 min, with DAPI (1:100) added during the final wash 
step. Oocytes were then mounted and analyzed by confocal 
microscopy for spindle morphology and chromosome 
alignment. Each oocyte was scored based on the structural 
appearance of the meiotic spindle as well as the arrangement 
of the chromosomes. Oocytes were marked as normal upon 
assessment of a barrel-shaped spindle with chromosomes 
aligned centrally along the metaphase plate. Conversely, 
oocytes were scored as abnormal following observation of 
one or more phenotypic defects, including a reduction in, 
or displacement of, microtubules, failure of microtubules to 
attach to chromosomes and/or dispersion or misalignment of 
chromosomes (Selesniemi et al. 2011, Ben-Meir et al. 2015).

mtDNA analysis

Following immunofluorescence staining, the fixed MII oocytes 
were retrieved from slides and incubated in 1 μL lysis buffer 
(10 mM EDTA, 0.5% SDS, 0.1 mg/mL Proteinase K) under 
mineral oil for 3 h at 37°C before storage at −80°C. mtDNA 
was amplified almost in its entirety (16,162 bp) by single 
molecule PCR (smPCR) with the Q5 Hot Start High-Fidelity 
Polymerase (New England Biolabs). The DNA samples were 
serially diluted until an optimal concentration was reached, 
consisting of 32 reactions, with approximately 1/3 of wells 
yielding a 16 kb band, with the remaining wells being 
negative, to ensure single molecule analysis. The subsequent 
PCR products were individually sequenced in 24 separate 
Sanger sequencing reactions with overlapping reads for 
post hoc full-length sequence assembly. Six and seven 
mitochondrial genomes were sequenced from single oocytes 
of individual representative POLG-END and POLG-SED 
mice, respectively, using a 3720xl DNA Analyzer (Applied 
Biosystems). Sequences were analyzed against the C57BL/6J 
mouse mitochondria reference genome (GenBank ID 
AY172335.1) using CodonCode Aligner software (CodonCode 
Corporation). A total of 199,966 bp were sequenced and 
213 mutations detected and manually verified. For mtDNA 
copy number analysis, short, 1 kb fragments were amplified 
following the single molecule protocol described earlier. Copy 
number was assessed through Poisson distribution correction 
(Kraytsberg et al. 2009).

Statistical analysis

Quantitative data from experimental replicates were combined 
and are presented as the mean ± s.e.m. or mean ± standard 
deviation (s.d.) of binomial distribution. Analysis of statistical 
significance was performed using Student’s t-test, with P values 
<0.05 considered significant. Statistical comparisons between 
more than three groups were performed using ANOVA, 
followed by Tukey’s t-test (P < 0.05 considered significant). For 
comparing mutant fractions of mitochondria in oocytes, the 
ratios of the number of mutations to total bases sequenced 
were compared, and z-score values were used to calculate 
P values.

Results

It has previously been reported that both male and 
female PolgD257A/D257A mice have impaired fertility 
(Trifunovic et al. 2004, Hance et al. 2005, Kujoth et al. 
2005, Safdar  et  al. 2011a). Our data confirm these 
reports in females. Notably, female PolgD257A/D257A mice 
produced no to very few litters between 2 and 9 months 
of age, with a dramatic reduction in the number of pups 
per litter as compared to PolgD257A/+ animals (Fig.  1A 
and B). Due to the anticipated and demonstrated 
dramatic reduction in the number of viable offspring 
for analysis from PolgD257A/D257A breeding pairs, all 
PolgD257A/D257A used in this study were obtained from 
PolgD257A/+ × PolgD257A/+ crosses.
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We then sought to determine whether endurance 
exercise could abrogate the accelerated age-related 
decline in oocyte quality in PolgD257A/D257A mice. 
POLG mice were placed into either sedentary (POLG-
SED) or endurance-exercised (POLG-END) groups. For 
endurance exercise training in all experiments, mice 
were placed on an exercise treadmill and run for 45 min, 
3 times per week, for the duration of the experiment. 
Exercise generated a slight, but not statistically significant, 
increase in body weight as compared to the POLG-SED 
group (Fig. 2A). Additionally, when body conditioning 
was evaluated in an endurance stress test, POLG-END 
mice were able to consistently spend more time on the 
treadmill than their POLG-SED counterparts (P < 0.01 for 
4- to 8-month-old mice). To determine whether exercise 
improves oocyte yield in POLG mice, WT (control), 
POLG-SED and POLG-END mice 3, 5, 7 and 9 months 
of age were superovulated, and the total number of 
ovulated oocytes from each group were counted and 
assessed for maturation status. Both total oocyte yield, 
as well as the number of oocytes that reached MII, were 
modestly, but not significantly, decreased in POLG mice 
between 3, 5 and 7 months of age as compared to WT 
and were similar between the POLG-SED and POLG-
END groups at 5, 7 and 9 months of age (Fig. 3A and 
B). There was a significant decline in the number of 
ovulated oocytes from POLG-SED and POLG-END as 
compared to WT at 9 months of age, with no oocytes 
ovulated from either POLG group thereafter (Fig.  3A, 
B, C and D). Additionally, there were no quantitative 
differences in the number of maturation arrested or dead 
oocytes between the groups, up to 7 months of age, with 
the dramatic decline in the number of ovulated oocytes 
at 9 months of age making the POLG groups no longer 
comparable to WT. However, there were no detectable 
differences between the POLG-SED and POLG-
END groups (Fig.  3C and D). In order to determine if 

endurance exercise impacts the number of follicles in 
the ovary, ovaries were collected from mice at 3, 7 and 
9 months of age, and the number of total, primordial, 
primary and preantral follicles was determined. The 
reserve of oocyte-containing primordial follicles in the 
ovaries of POLG mice was significantly diminished as 
compared to WT mice at all ages examined (Fig.  3E). 
Exercise did prevent the decline in the primordial follicle 
pool in POLG mice from the 7-month-old age group; 
however, this trend was not sustained in the 9-month-
old POLG-END mice. Taken together, these data suggest 
that while exercise may prevent early loss of follicles in 
PolgD257A/D257A mice, it does not sustain follicle numbers 
past 9 months of age, nor does it impact the number or 
maturation status of ovulated oocytes.

Figure 1 Female POLG mitochondrial DNA mutator mice have 
reduced fertility as compared to heterozygous littermates. The 
number of litters per dam (A), and number of pups per litter (B), is 
shown for mice heterozygous (PolgD257A/+; POLG-het) and 
homozygous (PolgD257A/D257A; POLG) for the POLG mutation over a 
12-month period, with male-pairing beginning at 6 weeks of age 
(n = 10 female mice per group, *P < 0.001).

Figure 2 Treadmill endurance exercise three times per week for 
45 min at 15 m/min. (A) Body weight (g) for sedentary (POLG-SED) 
and POLG endurance-exercised (POLG-END) POLG mutator mice 
3–9 months (M) of age. (B) Endurance test for POLG-SED and 
POLG-END mice. Mean ± s.e.m.; *P < 0.01 for POLG-SED vs 
POLG-END at all time points; n = 10 mice per group.
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We next sought to determine if exercise impacts the 
quality of MII oocytes in POLG mice. Previous work 
has demonstrated that mitochondrial aggregation is 
linked to the age-associated decline in oocyte quality 
(Selesniemi  et  al. 2011). Evaluation of mitochondrial 
distribution in MII oocytes using MitoTracker labeling 
followed by confocal microscopy and assessment 
of mitochondrial distribution demonstrated that by 
5 months of age, POLG-SED mice exhibited significant 
aberrant mitochondrial distribution as indicated by 
mitochondrial aggregation and clustering, as compared 
to WT controls, which largely demonstrated even, 
punctate patterning. In this age group, exercise had little 
impact on the mitochondrial distribution in oocytes from 
POLG mice. However, by 7 months of age, the aberrant 
mitochondrial phenotype was more pronounced in 
the POLG-SED group; an effect which was partially 
abrogated by exercise (Fig. 4A and B).

A parallel pattern was observed for meiotic spindle 
integrity and chromosomal arrangement (Fig.  5A, B 
and C). Following confocal microscopy and analysis of 
spindle formation and chromosomal alignment, it was 
demonstrated that in mature, MII oocytes collected from 
WT (control), POLG-SED and POLG-END females, the 
number of spindle abnormalities was unchanged in the 

POLG mice at 3 months of age as compared to WT, and by 
5 months of age, little difference was observed between 
the POLG-SED and POLG-END groups. However, by 
7  months of age, MII oocytes collected from POLG-
SED mice exhibited significant spindle malformation 
as compared to oocytes from WT mice, whereas the 
number of abnormalities observed in POLG-END mice 
were unchanged from the levels quantified at 5 months 
of age (Fig. 5A, B and C). Together, these data indicate 
that exercise may, at least in part, abrogate the oocyte 
abnormalities associated with poor oocyte quality in 
POLG mice.

To determine if the improvement in oocyte quality 
observed in oocytes from 7-month-old POLG females 
following exercise could be attributed to, in part, to 
a reduction in mitochondrial mutational load, we 
compared the number of mitochondrial mutations in 
individual fixed MII oocytes demonstrated to have normal 
mitochondrial distribution (observed by MitoTracker) in 
POLG-SED (n = 7) and POLG-END (n = 6) mice. Using 
single molecule PCR (smPCR) and Sanger sequencing, 
we determined the mtDNA mutant fraction for each 
group; POLG-SED had an average mutant fraction of 
1.08 × 10−3 (the equivalent of ~17.6 mutations per 
genome) while POLG-END had a mutant fraction of 

Figure 3 Oocyte numbers in POLG mice following endurance exercise. (A) Yield of oocytes following induced ovulation, collected from 3-, 5-, 
7-, 9- and >10-month-old (M) WT, POLG-sedentary (POLG-SED) and POLG endurance-exercised (POLG-END) mice (mean ± s.e.m.; n = 4–6 mice 
per group; N.O., no oocytes ovulated; * indicates significance, P = 0.01). (B) Number of mature (MII) oocytes per female (mean ± s.e.m.; n = 4–6 
mice per group). (C) Number of maturation arrested oocytes per female (mean ± s.e.m.; n = 4–6 mice per group). (D) Number of dead oocytes per 
female. Note: at 3 M endurance exercise treatments have not yet begun, and no oocytes were ovulated from POLG-SED or POLG-END mice 
post-9 M of age. (E) Enumeration of non-atretic primordial, primary and preantral follicles in the ovaries of 3-, 7- and 9-M WT, POLG-SED, and 
POLG-END mice. (WT, solid black bars; POLG-SED, solid gray bars; POLG-END, lined gray bars; mean ± s.e.m.; n = 4–6 mice per group; 
*P < 0.05.)
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1.05 × 10−3 (~17.1 mutations per genome). We found 
no discernible difference in mitochondrial mutational 
load between the POLG-SED and POLG-END groups 
(z-score = −0.199, P value = 0.841) (Fig.  6A and B). 
Additionally, to determine whether the observed deficits 
in female fertility are linked to a defect in mitochondrial 
biogenesis, we evaluated mtDNA copy number in WT, 
POLG-SED and POLG-END mice at 9  months of age 
and detected no appreciable differences in mtDNA copy 
number across the groups (data not shown). Collectively, 
these data indicate that while exercise does not impact 
oocyte numbers or maturation status in POLG mice, 
exercise does confer a modest benefit on oocyte quality 
that is independent from mitochondrial mutational load.

Discussion

The rapid accumulation of mutations generated by 
the defect in the proofreading-exonuclease activity of 
POLG in the mtDNA mutator mouse leads to a number 
of phenotypic defects across somatic tissues that are 
frequently associated with aging. By 7–9 months of age, 
POLG mice exhibit sarcopenia, depletion of adipose 
tissue, cardiomyopathy, fur loss and graying and other 
hallmark features of the aging process (Trifunovic et al. 
2004, Kujoth  et  al. 2005). Consistent with these 
findings, data herein establish that ovarian function at 
the level of the oocyte are prematurely diminished in 
the POLG mouse, as demonstrated by an accelerated 
reduction in the number of primordial follicles, aberrant 
mitochondrial distribution in oocytes and an increase in 
spindle malformation and chromosomal misalignment, 
similar to that observed in aged mice (Selesniemi et al. 
2011). Additionally, we report that exercise performed 

in moderation (45 min, 3 times per week) is sufficient 
to modestly improve phenotypic markers of oocyte 
quality in POLG mice; however, it does not result in 
an extended time frame for fertility. By 9  months of 
age, we were unable to consistently obtain oocytes for 
analysis from either sedentary or exercised POLG mice. 
Importantly, although modest improvements in oocyte 
quality occurred following exercise, the mitochondrial 
mutational rate remained unchanged in the oocytes of 
exercised POLG mice, as compared to their sedentary 
counterparts similar to what has been reported in muscle 
(Safdar et al. 2011a,b, 2016b).

Illustrating the difference between oocytes and 
somatic cells, it has recently been demonstrated 
that a similar endurance exercise protocol leads to 
reduction in the mtDNA non-mutational damage 
burden in skeletal muscle, largely through a p53-
dependent mechanism in which p53 is localized 
to mitochondria and acts as an accessory fidelity-
enhancer to the DNA-repair mechanism of POLG, 
forming a complex together with Tfam at the level of 
mtDNA (Safdar  et al. 2016b). Additionally, in somatic 
tissue exercise induced the translocation of nuclear p53 
to mitochondria, which in turn lead to upregulation 
of peroxisome proliferator-activated receptor gamma, 
coactivator 1 alpha (PGC1-α), an important modulator 
of metabolism and mitochondrial biogenesis 
(LeBleu  et  al. 2014, Safdar  et  al. 2016b). In oocytes, 

Figure 5 Exercise improves meiotic spindles and chromosome 
alignment in POLG mice at 7 months of age. (A) Representative laser 
scanning confocal micrographs of meiotic spindles in MII oocytes 
from 7-month-old (7 M) WT, POLG-sedentary (POLG-SED) and 
POLG endurance-exercised (POLG-END) mice; α-tubulin labeling of 
spindle (green) and DNA labeled with DAPI (blue). Scale bars = 5 μm. 
(B and C) Occurrence of spindle abnormalities and chromosome 
misalignment in oocytes from 3 M WT and POLG-SED, and 5 and 7 
M WT, POLG-SED and POLG-END mice (mean shown, error 
calculated as s.d. of a binomial distribution; n = 20–39 oocytes from 
5–6 mice per group; *P < 0.05).

Figure 4 Exercise maintains normal mitochondrial distribution in 
oocytes from POLG mice at 7 months of age. (A) Representative 
images of MII eggs labeled with MitoTracker (shown in red) from 
7-month-old (7 M) WT, POLG-sedentary (POLG-SED), and POLG 
endurance exercised (POLG-END) mice (mitochondrial staining with 
MitoTracker shown in red). Star indicates abnormal mitochondrial 
patterning; scale bar = 15 μm. (B) Occurrence of abnormal 
mitochondrial distribution in MII oocytes of WT, POLG-SED and 
POLG-END mice (mean shown, error calculated as s.d. of a binomial 
distribution; n = 20–49 oocytes from 5–6 mice per group; *P < 0.05).
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however, the positive impact of exercise on oocyte 
quality is likely governed by alternative mechanisms. 
For example, while mice deficient in PGC1-α exhibit 
increased offspring mortality, females that do survive 
to 12 months of age demonstrate improved markers of 
oocyte quality, including dramatically reduced spindle 
abnormalities and chromosomal misalignment, as well 
as a decrease in abnormal mitochondrial aggregation 
as compared to WT. These data indicate that lack of 
PGC1-α has a positive, rather than detrimental, impact 
on oocyte quality with age (Selesniemi  et  al. 2011). 
Furthermore, while a fidelity-enhancing mechanism for 
p53 following exercise has been proposed for somatic 
tissues by ourselves and others (Safdar et al. 2016a,b), 
it is unlikely that this is the case in oocytes, as the role 
of p53 and its related family members, p63 and p73, 
are unique in oocytes as compared to somatic cells 
types (Hu et al. 2007, Levine et al. 2011). Given distinct 
role of the p53 family members in oocyte function, 
it is likely that, similar to PGC1-α, the molecular 
mechanisms that mediate the impact of exercise on 
oocyte quality are divergent from those operating in the 
soma. It should be noted that even the basic processes 
of biogenesis and mitophagy are dissimilar in oocytes, 
with biogenesis halted prior to development to MII and 
mitophagy thought to be absent (Boudoures et al. 2017). 
Importantly, mitochondrial biogenesis in POLG mice 
is associated with an increase in mtDNA mutational 
load (Dillon  et  al. 2012), as mitochondrial genomic 
replication with a faulty polymerase results the steady 
accumulation of mutations. In this study, exercised 
POLG mice did not accrue an additional mutational 
burden as compared to their sedentary counterparts. 
Together, these data indicate that exercise does not result 
in appreciable mitochondrial biogenesis, beyond what 
is observed in sedentary counterparts, in the oocytes of 
POLG mice.

Nonetheless, while mitochondrial mutational load 
was unaffected, moderate exercise did have a modest 
positive impact on oocyte quality during the latter stages 
of the fertile period (prior to 9  months of age) in the 
POLG mouse. The exercise regime included treadmill 
exercise at regular intervals throughout the week, in 
addition to an endurance stress test performed once 
per month. The endurance exercise group consistently 
exceeded the sedentary group, with a significant 
increase in the time to exhaustion. Thus, the total 
exercise regime includes regular moderate exercise with 
intervals of more strenuous physical activity. Although 
the total number of MII oocytes collected was not 
significantly greater than sedentary counterparts, the 
metrics for quality in oocytes from exercised POLG 
mice were improved. However, the impact of exercise 
on oocyte quality was observed only at the 7-month 
time point. At 7 months, oocytes from sedentary POLG 
mice showed elevated defects in spindle assembly, 
chromosome alignment and mitochondrial distribution, 
whereas oocytes from exercised POLG mice maintained 
the profile from earlier time points (3 and 5  months). 
Following 7 months, oocytes were infrequently obtained 
from either sedentary or exercised POLG mice. Together, 
these data collectively indicate that exercise has a 
modest effect on oocyte quality, with a lack of impact 
on total oocyte numbers and does not extend the fertile 
lifespan in female POLG mice. This is, again, in stark 
contrast to what has been reported in somatic tissues 
in the POLG mouse, in which the benefit of exercise 
is pronounced.

These findings are in agreement with a recently 
published study in which voluntary exercise induced 
moderate improvements on the structure of mitochondria 
in oocytes of mice fed a high-fat diet (HFD), reducing 
the number of rose-petal and elliptical-shaped 
mitochondria (Boudoures et al. 2016). Additionally, the 

Figure 6 Exercise does not impact mitochondrial mutations in oocytes from POLG mice. (A) mtDNA sequencing coverage, numbers of 
mutations, insertions and deletions, and total mutational load in single oocytes from individual sedentary (n = 7 oocytes) and endurance-
exercised (n = 6 oocytes) 7-month-old POLG mice. (B) Average mutational number in POLG-sedentary (POLG-SED) and POLG endurance-
exercised (POLG-END) mice. Mean ± s.e.m.; no significant change in mutational number (P = 0.91) or mutational load (P = 0.80).
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oocytes of exercised mice fed a HFD had reduced lipid 
accumulation. However, unlike our study, which utilized 
a forced endurance exercise protocol, oocytes from the 
HFD mice on a voluntary exercise regime did not exhibit 
improvements in MII spindle structure. Although both 
studies demonstrate modest improvements in oocyte 
quality following moderate exercise protocols, exercise 
alone was not sufficient to rescue oocyte quality to 
levels comparable to control or WT mice. In women, 
the impact of exercise on the timing of menopause 
remains a topic of debate. A number of studies have 
examined the correlation between exercise status and 
the age at menopause in women, with contradictory 
results (Cumming  et  al. 1994, Cassou  et  al. 1997, 
Amigoni  et  al. 2000, Cooper  et  al. 2001). While 
moderate exercise does not appear to have influence on 
menopausal age (Bromberger et al. 1997, Amigoni et al. 
2000, Palmer et al. 2003), excessive exercise (>8 hours 
per week) is potentially linked to a decrease in the 
age of onset of menopause (Cumming  et  al. 1994, 
Nagata et al. 2012).

The benefit of exercise on both extension of lifespan 
as well as a reduction in instances of chronic diseases 
has been well documented in both humans and animal 
models (Chakravarty et al. 2008, Stessman et al. 2009). 
In humans, even moderate regular exercise significantly 
increases lifespan (Moore et al. 2012, Arem et al. 2015). 
In rodents, it has been demonstrated that exercise 
results in a decrease in the instance of chronic illness 
(Garton et al. 2016). Most notably, moderate endurance 
exercise has the remarkable effect to systemically 
ameliorate the many age-associated phenotypic 
characteristics of the POLG mutator mouse and modulate 
the metabolic profile of the brain (Safdar et al. 2011a,b, 
2016b, Clark-Matott et al. 2015). However, based on the 
results reported herein, the benefit of exercise on female 
fertility at the level of the oocyte in the POLG mouse is 
relatively limited as compared to somatic tissues, which 
is likely indicative of the highly specialized molecular 
mechanics of the oocyte, which, unlike somatic tissues, 
give rise to subsequent generations through eventual 
propagation of the germline. Although it is possible 
that this is a limitation of the model itself, in that the 
high mutational burden simply might not be countered 
by exercise, it is intriguing that the intervention that 
so widely impacts the somatic tissues does not confer 
a similar benefit to oocytes in the POLG mouse and 
demonstrates yet another paradigm in which the 
oocyte differs mechanistically in dramatic fashion as 
compared to somatic cells and tissues. This finding 
highlights functional features, appearing to be exclusive 
to oocytes, which mediate mitochondrial biology. 
Accordingly, it remains likely that further investigations 
into the molecular mechanisms that uniquely govern 
mitochondrial function in the oocyte utilizing the 
POLG mouse model will uncover additional alternative 
features of mitochondria specific to the germline.
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